, 2011) Of the proteins that bound selectively to ecto-LPHN3-Fc,

, 2011). Of the proteins that bound selectively to ecto-LPHN3-Fc, FLRT2 and FLRT3 were among the most abundant

and were of particular interest due to similarities in domain organization to previously identified postsynaptic organizing molecules such as the LRRTMs (de Wit et al., 2011), which were not detected in our purification Roxadustat mw (Figure 1B). We also identified proteins in the Teneurin family (also named ODZs), which have recently been reported as ligands for LPHN1 (Silva et al., 2011) (see Figure S1A available online). Because FLRT3 was the most abundant FLRT protein identified in the ecto-LPHN3-Fc pull-down, we carried out complementary experiments with ecto-FLRT3-Fc to confirm this interaction MAPK Inhibitor Library (Figures 1B and S1A). Affinity chromatography and mass spectrometry using ecto-FLRT3-Fc resulted in the identification of a large number of LPHN1 and LPHN3 peptides, with relatively fewer LPHN2 peptides, but not the abundant presynaptic organizing protein NRXN1 (Figure 1C). UNC5B (Figure S1B), a previously reported FLRT3 interactor, was also identified, but at much

lower abundance (Karaulanov et al., 2009, Söllner and Wright, 2009 and Yamagishi et al., 2011). When total spectra counts from proteins identified in both purifications were compared, LPHN3 and FLRT3 stood out clearly as the proteins most frequently detected in both purifications (with each as bait in one condition and prey in the other) (Figure 1D). To support our mass spectrometry results, we verified the association of FLRT3 with LPHN3 by western blot in similar ecto-Fc pull-down assays on rat brain extract and transfected heterologous cell lysate (Figures 1E–1I). Together, these findings suggest that FLRTs likely represent endogenous ligands for latrophilins. To test whether FLRT3 and LPHN3 can all bind to one another in a cellular context, we expressed FLRT3-myc

in HEK293 cells and applied ecto-LPHN3-Fc or control Fc protein. We observed strong binding of ecto-LPHN3-Fc to cells expressing FLRT3-myc, but no binding of Fc (Figure 1J). Ecto-LPHN3-Fc did not bind to cells expressing myc-LRRTM2 (Figure S1D), showing that the LPHN3-FLRT3 interaction is specific. Ecto-LPHN3-Fc also bound strongly to the other FLRT isoforms, FLRT1 and FLRT2 (Figure S1D), and ecto-LPHN1-Fc bound to all FLRT isoforms as well (Figure S1C). Complementarily, ecto-FLRT3-Fc, but not control Fc, bound strongly to cells expressing LPHN3-GFP (Figure 1K). Ecto-FLRT3-Fc also bound the previously identified interactors UNC5A, UNC5B, and UNC5C, but did not bind to NRXN1β(+ or −S4)-expressing cells (data not shown). We also confirmed that ecto-LPHN3-Fc, but not ecto-FLRT3-Fc, could bind to cells expressing teneurin 3, confirming that LPHNs and teneurins can indeed interact (Figure S1E). Thus, we find that LPHNs and FLRTs strongly interact, with promiscuity between isoforms.

Comments are closed.