Nucleic Acids Res 1994, 22:4673–4680.PubMedCrossRef Authors’ contributions ST coordinated the study, Pifithrin�� participated in the concept development and in the assays design, the analysis and interpretation of the results, and drafted the manuscript. MC participated in the concept development and in the assays design, carried out sample preparation and optimization of PCR experimental procedures, the analysis and interpretation of the results, and helped with the manuscript
preparation. IML carried out sample preparation and PCR experimental procedures, and helped with analysis and interpretation of the results. ES was involved in the initial study design, participated in sample selection and performed some of the preliminary experiments. All authors read and approved the final manuscript.”
“Background Yersinia enterocolitica
is an important food- and water-borne gastrointestinal agent. It is known to cause a variety of syndromes ranging from Selleck Oligomycin A mild gastroenteritis to more invasive diseases like terminal ileitis and mesenteric lymphadenitis mimicking appendicitis [1]. Blood transfusion associated septicaemia due to Y. enterocolitica has been reported to have high mortality [2]. Post infectious sequelae include reactive arthritis and erythema nodosum [1]. Y. enterocolitica is classified into six biovars (1A, 1B, 2, 3, 4 and 5) and more than 50 serotypes [3]. On the basis of pathogenicity, it has been grouped into highly pathogenic (biovar 1B), moderately pathogenic (biovars 2-5) and the so called non-pathogenic (biovar 1A) biovars. Recently, using comparative phylogenomics, Howard et al [4] suggested that these groups might represent three GDC-0449 chemical structure subspecies of Y. enterocolitica. The biovar 1A strains are quite heterogeneous serologically and have been isolated from a variety
of sources viz. stools of diarrheic humans, animals, food and aquatic sources [5]. The biovar 1A strains are thought to be non-pathogenic as they lack pYV (plasmid for Yersinia Liothyronine Sodium virulence) plasmid and major chromosomal virulence determinants [1]. However, some biovar 1A strains are known to produce symptoms indistinguishable from that produced by the pathogenic biovars [6, 7]. Y. enterocolitica biovar 1A has also been implicated in nosocomial [8] and food-borne [9] outbreaks. A serotype O:6,30 (biovar 1A) strain was reported to cause placentitis and abortion in pregnant ewes [10]. Y. enterocolitica biovar 1A was the most predominant biovar isolated from both livestock and humans during a survey in Great Britain in 1999-2000 and surely needs to be studied further [11]. Several recent studies suggest that these strains might possess novel, as yet unidentified, virulence determinants [12–16]. Serological heterogeneity notwithstanding, Y.