Cheng et al. [13] reported that Lunx mRNA was the most specific biomarker with the highest sensitivity when compared with CK19, CEA, vascular endothelial
growth factor-C ABT-263 solubility dmso (VEGF-C), and heterogeneous ribonuclear protein (hnRNP) for the differential diagnosis of non-small cell lung cancer from pleural effusion. However, it is still unclear whether Lunx mRNA expression in pleural effusions can predict the source of tumor cells and the responses of patients to chemotherapy. Reverse transcriptase polymerase chain reaction (RT-PCR) is the most sensitive method for the detection of micrometastatic diseases, allowing for the detection of one cancer cell in 106 to 107 mononuclear cells [14, 15], but it is not effective in evaluating therapeutic effect and prognosis. Quantitative real-time RT-PCR can be used to assess gene expression levels and further evaluate the relationship between genes and disease. Currently, very little information is available on the relationship between the expression of Lunx mRNA and MPE. The main purpose AZD2014 cost of this study
was to evaluate Lunx mRNA expression in lung cancer cells using quantitative real-time RT-PCR, and to assess the diagnostic usefulness of Lunx mRNA expression as a tumor marker in pleural effusion. Furthermore, the correlation of Lunx mRNA expression in pulmonary carcinoma patients with pleural effusion and clinical factors was investigated. Benzatropine Methods Patients and controls Two hundred and nine patients with pleural effusions were recruited from the inpatient hospital of the First Hospital of Jilin University from July 2010 to January 2013. MPEs were PF-6463922 chemical structure diagnosed in 112 patients. Of these patients, 106 cases were pathologically shown to have pulmonary carcinoma and six patients had extrapulmonary carcinoma. Four patients with pathologically proven pulmonary carcinoma of the lung did not have MPEs. The pleural effusions of three of these patients were caused by heart failure, and the other was caused by hypoproteinemia.
The other 93 patients were diagnosed with nonmalignant pleural effusions, including 42 caused by tuberculosis, 13 caused by pneumonia, and 38 caused by heart failure or hypoproteinemia. The clinical characteristics of the patients are shown in Table 1. Eighty-two patients accepted chemotherapy (Table 2), and the therapeutic effect was evaluated after two sessions of treatment. The 82 patients received first-line chemotherapy regimens for non-small cell lung carcinoma (NSCLC), including navelbine plus cis-platinum or carboplatin (NP), paclitaxel plus cis-platinum or carboplatin (TP), gemcitabine plus cis-platinum or carboplatin (GP), or docetaxel plus cis-platinum or carboplatin (DP), or they received a chemotherapy regimen for small cell lung carcinoma (SCLC), namely etoposide plus cis-platinum (EP). Lunx mRNA expression was detected before and after the first session of chemotherapy.